
1 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E

After initial salvage attempts, the ship
was largely forgotten until Anders Franzen
located it in 1956.1 In 1961, 333 years af-
ter it sank, the Vasa was raised; it was so
well preserved that it could float after the
gun portals were sealed and water and
mud were pumped from it. The sheltered
harbor had protected the ship from storms,
and the Baltic Sea’s low salinity prevented
worms from infesting and destroying the
wooden vessel. Today it is housed in the
Vasa Museum (www.vasamuseet.se), near
the site where it foundered.2 Figures 1 and
2 show the restored ship and a recreation of
its sinking.

Researchers have extensively analyzed the
Vasa and examined historical records con-
cerning its construction. It sank, of course,
because it was unstable. The reasons it was
unstable, and launched when known to be

unstable, are numerous and varied. Although
we may never know the exact details sur-
rounding the Vasa, this article depicts our
“most probable scenario” based on the ex-
tensive and remarkably well-preserved docu-
ments of the time, evidence collected during
visits to the Vasa Museum, information from
the referenced Web sites, and publications by
those who have investigated the circum-
stances of the Vasa’s sinking. The problems
encountered are as relevant to our modern-
day attempts to build large, complex soft-
ware systems as they were to the 17th-cen-
tury art and craft of building warships.

The Vasa story
The story of the Vasa unfolds as follows.

Changing the shipbuilding orders
On 16 January 1625, Sweden’s King Gus-

focus
Why the Vasa Sank:
10 Problems and Some Antidotes
for Software Projects

Richard E. Fairley, Oregon Health and Sciences University

Mary Jane Willshire, University of Portland

In 1628, the Royal
Swedish Navy
launched the Vasa.
After sailing only
about 1,300 meters,
it sank. The authors
review the project’s
problems, including
why the ship was
unstable and why it
was still launched.
They interpret the
case in terms of
today’s large,
complex software
projects and present
some antidotes.

O
n 10 August 1628, the Royal Swedish Navy’s newest ship set sail
on its maiden voyage. The Vasa sailed about 1,300 meters and
then, in a light gust of wind, capsized in Stockholm’s harbor, los-
ing 53 lives. The ship was Sweden’s most expensive project ever,

and a total loss. This was a major national disaster—Sweden was at war with
Poland and needed the ship for the war effort. A formal hearing the follow-
ing month did not determine why the ship sank, and no one was blamed.

process

tav II Adolf directed Admiral Fleming to
sign a contract with the Stockholm ship
builders Henrik and Arend Hybertsson to
design and oversee construction of four ships.
Henrik was the master shipwright, Arend
the business manager. They subcontracted
with shipbuilder Johan Isbrandsson to build
the ships under their direction over a period
of four years. Two smaller ships were to
have about 108-foot keels; the two larger
ones, about 135-foot keels.

Based on a series of ongoing and confusing
changes the King ordered during the spring
and summer of 1625, Henrik requested oak
timbers be cut from the King’s forest for two
108-foot ships and one 135-foot ship. On 20
September, the Swedish Navy lost 10 ships in
a devastating storm. The king then ordered
that the two smaller ships be built first on an
accelerated schedule to replace two of the lost
ships. Construction of the Vasa began in early
1626 as a small, traditional ship; it was com-
pleted two and a half years later as a large, in-
novative ship, after undergoing numerous
changes in requirements.

On 30 November 1625, the King changed
his order, requiring the two smaller ships to
be 120 feet long so that they could carry
more armament: 32 24-pound guns in a tra-
ditional enclosed-deck configuration.1 (“24
pounds” refers to the weight of the shot
fired by the cannon. A 24-pounder weighed
approximately 3,000 pounds.) Henrik inven-
toried materials and found that he had
enough timber to build one 111-foot ship
and one 135-foot ship. Under the King’s di-
rection, as conveyed by Admiral Fleming,
Henrik laid the keel for a 111-foot ship be-
cause it could be completed more quickly
than the larger one. The records are unclear
as to whether the keel was initially laid for
this size or initially for a 108-foot ship and
then extended to 111 feet.

No specifications for the modified keel
After the Vasa’s 111-foot keel had been

laid, King Gustav learned that Denmark
was building a large ship with two gun
decks. The King then ordered the Vasa to be
enlarged to 135 feet and include two en-
closed gun decks (see Figure 3). No one in
Sweden, including Henrik Hybertsson, had
ever built a ship with two enclosed gun
decks. Because of schedule pressure, the
shipbuilders thought that scaling up the

111-foot keel using materials planned for
the bigger ship would be more expeditious
than laying a new 135-foot keel.

The evolution of warship architecture
from one to two enclosed gun decks in the
early 1600s marked a change in warfare tac-
tics that became commonplace in the late
1600s and 1700s. The objective became to
fire broadside volleys and sink the oppo-
nent. Before that, warships fired initial can-
non volleys to cripple their opponent’s ship
so that they could board and seize it. To this
end, earlier warships carried large numbers
of soldiers (as many as 300).

Although the contract with the Hy-
bertssons was revised (and has been pre-
served), no one has ever found specifications
or crude sketches for either the 111-foot or
135-foot Vasa, and none of the related
(and well-preserved) documents mentions
such drawings. It is unlikely that anyone
spent time preparing specifications, given
the circumstances and schedule pressure un-
der which the Vasa was constructed. They
probably would not have been prepared for

M a r c h / A p r i l 2 0 0 3 I E E E S O F T W A R E 1 9

Figure 1. The restored
Vasa, housed in
Stockholm’s Vasa
Museum (model in
foreground, Vasa in
background).

the original 108-foot ship, because these
types of ships had been routinely built for
many years and Hybertsson was an experi-
enced shipwright, working with an experi-
enced shipbuilder. Henrik Hybertsson prob-
ably “scaled up” the dimensions of the
original 108-foot ship to meet the length and
breadth requirements of the 111-foot ship
and then scaled those up for the 135-foot
version of the Vasa.

How he scaled up the 111-foot Vasa to

135 feet was constrained by its existing
keel, which contained the traditional three
scarfs. He added a fourth scarf to lengthen
the keel, but the resulting keel is thin in re-
lation to its length, and its depth is quite
shallow for a ship of this size.

Hybertsson’s assistant, Hein Jacobsson,
later said that the Vasa was built one foot,
five inches wider than originally planned to
accommodate the two gun decks. However,
the keel was already laid, so they could
make that change in width only in the upper
parts of the ship. This raised the center of
gravity and contributed to the Vasa’s insta-
bility (sailing ships are extremely sensitive
to the location of the center of gravity; a few
centimeters can make a large difference).
Also, those outfitting the ship for its first
voyage found that the shallow keel did not
provide enough space in the hold for the
amount of ballast needed to stabilize a 135-
foot ship. The keel’s thinness required extra
bracing timbers in the hold, further restrict-
ing the space available for ballast.

Shifting armaments requirements
The numbers and types of armaments to

be carried by the scaled-up Vasa went through
a number of revisions. Initially, the 111-foot
ship was to carry 32 24-pound guns. Then,
the 135-foot version was to carry 36 24-
pound guns, 24 12-pound guns, eight 48-
pound mortars, and 10 smaller guns. After
a series of further revisions, the Vasa was to
carry 30 24-pounders on the lower deck
and 30 12-pounders on the upper deck. Fi-
nally, the King ordered that the Vasa carry
64 24-pound guns—32 on each deck—plus
several smaller guns (some documents state
the required number as 60 24-pound
guns).

Mounting only 24-pound guns had the ad-
vantage of providing more firepower and al-
lowed standardization on one kind of ammu-
nition, gun carriage, powder charge, and
other fittings. However, the upper deck had to
carry the added weight of the 24-pound guns
in cramped space that had been built for 12-
pound guns, further raising the ship’s center
of gravity. In the end, the Vasa was launched
with 48 24-pound guns (half on each deck),
because the gun supplier’s manufacturing
problems prevented delivery of more guns on
schedule. Waiting for the additional guns
would have interfered with the requirement

2 0 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

Figure 2. A
recreation of the
Vasa disaster.
(photo by Hans
Hammarskiöld)

Figure 3. The Vasa’s
two gun decks.

to launch the ship as soon as possible. An-
other indication of excessive schedule pres-
sure is that the gun castings were of poor
quality. They might well have malfunctioned
(exploded) during a naval battle.

Artisan shipbuilders constructed the
Vasa’s rigging and outfitting without ex-
plicit specifications or plans, in the tradi-
tional manner that had evolved over many
years. The King ordered that the ship be
outfitted with hundreds of ornate, gilded,
and painted carvings depicting Biblical,
mythical, and historical themes (see Figure
4). The Vasa was meant to impress by out-
doing the Danish ship being built; no cost
was spared, making the Vasa the most ex-
pensive ship of its time. However, the heavy
oak carvings raised the center of gravity and
further increased instability.

The shipwright’s death
Henrik Hybertsson became seriously ill

in 1626 and died in 1627, one year before
the Vasa was completed. During the year of
his illness, he shared project supervision
with Jacobsson and Isbrandsson, but ac-
cording to historical records, project man-
agement was weak. Division of responsibil-
ity was not clear and communication was
poor; because there were no detailed speci-
fications, schedule milestones, or work plans,
it was difficult for Jacobsson to understand
and implement Hybertsson’s undocumented
plans. Communication among Hybertsson,
Jacobsson, and Isbrandsson was poor. This
resulted in further delays in completing the
ship.

Admiral Fleming made Jacobsson (Hy-
bertsson’s assistant) responsible for complet-
ing the project after Hybertsson’s death. At
this time and during the subsequent year, 400
people in five different groups worked on the
hull, carvings, rigging, armaments, and bal-
lasting—apparently with little, if any, com-
munication or coordination among them.
This was the largest work force ever engaged
in a single project in Sweden up to that time.
There is no evidence that Jacobsson prepared
any documented plans after becoming re-
sponsible for completing the ship.

No way to calculate stability, stiffness, or
sailing characteristics

Methods for calculating the center of
gravity, heeling characteristics, and stability

factors for sailing ships were unknown, so
ships’ captains had to learn their vessels’
operational characteristics by trial-and-
error testing. The Vasa was the most spec-
tacular, but certainly not the only, ship to
capsize during the 17th and 18th centuries.

Measurements taken and calculations per-
formed since 1961 indicate that the Vasa was
so unstable that it would have capsized at a
heeling over of 10 degrees; it could not have
withstood the estimated wind gust of 8 knots
(9 miles per hour) that caused the ship to cap-
size.3 Recent calculations indicate the ship
would have capsized in a breeze of 4 knots.

That the wind was so light during the Vasa’s
initial (and final) cruise is verified by the
fact that the crew had to extend the sails
by hand upon launch. Lieutenant Petter
Gierdsson testified at the formal inquiry
held in September 1628: “The weather was
not strong enough to pull out the sheets, al-
though the blocks were well lubricated.
Therefore, they had to push the sheets out,
and one man was enough to hold a sheet.”4

During the formal inquiry, several wit-
nesses commented that the Vasa was “heav-
ier above than below,” but no one pursued
the questions of how and why the Vasa had
become top-heavy. No one mentioned the
weight of the second deck, the guns, the
carvings, or other equipment. In those days,
most people (including the experts) thought
that the higher and more impressive a war-
ship, and the more and bigger the guns it
carried, the more indestructible it would be.

M a r c h / A p r i l 2 0 0 3 I E E E S O F T W A R E 2 1

Figure 4. The ship’s
ornate, gilded
carvings.

The failed prelaunch stability test
Captain Hannson (the ship’s captain) and

a skeleton crew conducted a stability test in
the presence of Admiral Fleming during out-
fitting of the Vasa. The “lurch” test con-
sisted of having 30 men run from side to
side amidship. After three traversals by the
men, the test was halted because the ship
was rocking so violently it was obvious it
would capsize if the test were not halted.
The ship could not be stabilized because
there was no room to add ballast under the
hold’s floorboards (see Figure 5). In any
case, the additional weight would have
placed the lower-deck gun portals near or
below the ship’s waterline. The Vasa was es-
timated to be carrying about 120 tons of
ballast; it would have needed more than
twice that amount to stabilize.

That the Vasa was launched with known
stability problems was the result of poor com-

munication, pressure from King Gustav to
launch the ship as soon as possible, the fact
that the King was in Poland conducting a war
campaign (and thus unavailable for consulta-
tion), and the fact that no one had any sug-
gestions for making the ship more stable.

Testimony at the formal hearing indi-
cated that Jacobsson, the shipwright, and Is-
brandsson, the shipbuilder, were not present
during the stability test and were unaware
of the outcome. The boatswain, Matsson,
testified that Admiral Fleming had accused
him of carrying too much ballast, noting
that “the gunports are too close to the wa-
ter!” Mattson then claimed to have an-
swered, “God grant that the ship will stand
upright on her keel.” To which the Admiral
replied, “The shipbuilder has built ships be-
fore and you should not be worried.”4

Whether Admiral Fleming and Captain
Hannson intentionally withheld the stabil-
ity test results is a matter for speculation.
The King had ordered that the Vasa be
ready by 25 July and “if not, those respon-
sible would be subject to His Majesty’s dis-
grace.” The Vasa’s maiden voyage on 10 Au-
gust was more than two weeks later. It was
reported that after the failed stability test,
Admiral Fleming lamented, “If only the King
were here.”5

Ten problem areas and their
antidotes

Many of the Vasa project’s problems
sound familiar to those who have grappled
with large software projects. Table 1 pres-
ents 10 problems from the Vasa project that
are also common to software projects, along
with some antidotes for software projects.

1. Excessive schedule pressure
Many software projects, like the Vasa proj-

ect, are under excessive schedule pressure to
meet a real or imagined need. According to
Fred Brooks, more software projects have
failed (“gone awry”) for lack of adequate
calendar time than for all other reasons
combined.6 Excessive schedule pressure in
software projects is caused by

� Truly pressing needs
� Perceived needs that are not truly pressing
� Changing of requirements without ad-

justing the schedule or the resources (see
Problem 2)

2 2 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

Table 1
Ten software project problems and some antidotes
Problem area Antidotes

1. Excessive schedule pressure Objective estimates
More resources
Better resources
Prioritized requirements
Descoped requirements
Phased releases

2. Changing needs Iterative development
Change control/baseline management

3. Lack of technical specifications Development of initial specifications
Event-driven updating of specifications
Baseline management of specifications
A designated software architect

4. Lack of a documented project plan Development of an initial plan
Periodic and event-driven updating
Baseline management of the project plan
A designated project manager

5. & 6. Excessive and secondary innovations Baseline control
Impact analysis
Continuous risk management
A designated software architect

7. Requirements creep Initial requirements baseline
Baseline management
Risk management
A designated software architect

8. Lack of scientific methods Prototyping
Incremental development
Technical performance measurement

9. Ignoring the obvious Back-of-the-envelope calculations
Assimilation of lessons learned

10. Unethical behavior Ethical work environments and work cultures
Personal adherence to a code of ethics

� Unrealistic schedules imposed on projects
by outside forces

� Lack of realistic estimates based on ob-
jective data

When schedule estimates are not based on
objective data, software engineers have no
basis for defending their estimates or for re-
sisting imposed schedules. You can sometimes
meet schedule requirements by increasing
project resources, applying superior re-
sources, descoping the (prioritized) require-
ments, phasing releases, or some combina-
tion of these antidotes.

2. Changing needs
Some common reasons for changes to

software requirements include competitive
forces (as in the case of the Vasa), user needs
that evolve over time, changes in platform
and target technologies, and new insights
gained during a project. There are two tech-
niques for coping with changing software
requirements:

� Pursuing an iterative development strat-
egy (for example, incremental, evolu-
tionary, agile, or spiral)

� Practicing baseline management

You can use these techniques alone or to-
gether. In the case of iterative development,
you can accommodate requirements changes
based on priority within the constraints of
time, resources, and technology—any of
which you can adjust as the project evolves.
When using baseline management, you ini-
tially place the requirements under version
control. Approved changes result in a new
version of the requirements (a new base-
line), which is accompanied by adjustments
to schedule, resources, technology, and
other factors as appropriate. The goal of
both approaches is to maintain, at all times,
a balance among requirements, schedule,
resources, technology, and other factors
that might pose risks to successful delivery
of an acceptable product within the project
constraints.

3. Lack of technical specifications
Software projects, like the Vasa project,

sometimes start as small, familiar activities
for which technical specifications are
deemed unnecessary. These projects often

grow to become large, innovative ones. In
the Vasa’s case, verbal communication
might have compensated somewhat for the
lack of written specifications and a written
project plan. In the case of software proj-
ects, initially developing and baselining re-
quirements, even for a small, simple proj-
ect, is much easier (and less risky) than
trying to “reverse-engineer” requirements
later, when the project has crossed a com-
plexity threshold that warrants developing
technical specifications.

4. Lack of a documented project plan
Because its designers saw the Vasa as a

small, familiar ship and because the project
team was experienced in building these
types of ships, they might have thought sys-
tematic planning was an unnecessary use of
time and resources. Software projects often
start under similar circumstances. As in the
case of requirements, evolving a baselined
project plan for an initially small project is
much easier than trying to construct a proj-
ect plan later (when there is no time to do
so). A software project plan must include

� Decomposition of the work to be done
(that is, a work breakdown structure)

� Allocation of requirements to the work
elements of the WBS

� An allocated schedule (for example, a
milestone chart)

� Allocation of resources to each schedule
increment

� Deliverable work products for each
schedule increment

M a r c h / A p r i l 2 0 0 3 I E E E S O F T W A R E 2 3

Figure 5. A cross
section of the Vasa
showing its shallow
keel and its multiple
decks, including the
two gun decks.

� Plans for acquiring software from ven-
dors and open sources

� Plans for managing subcontractors
� A risk management plan
� A clear statement of authorities and

responsibilities7

You can document the project plan for a
small software project in a few pages and
then expand it as the project grows.

5. Excessive innovation
In To Engineer Is Human, Henry Pet-

roski observes that engineering projects
often fail when people attempt innova-
tions beyond the state of the art.8 Software
projects are always innovative to some ex-
tent because replicating existing software,
unlike replicating physical artifacts, is a triv-
ial process. Software projects are conducted
to develop new systems “from scratch” and
to produce new versions of existing systems,
but not to replicate software. To control ex-
cessive innovation in software projects, you
can apply the following techniques:

� Baseline control of working documents
(for instance, requirements, project plans,
design documents, test plans, and
source code)

� Impact analysis of proposed changes
� Continuous risk management

6. Secondary innovations
Reasons for secondary innovations in

software projects include the need to ac-
commodate the constraints of the technolo-
gies used, the addition of derived require-
ments to support primary requirements and
changes to them, and innovations based on
the developers’ creative impulses. As in the
Vasa’s case, these secondary requirements
can overwhelm a software project. In addi-
tion to the techniques mentioned for con-
trolling Problem 5, you should assign re-
sponsibility and give authority to a designated
software architect to maintain the software
product’s vision and integrity, which is an ad-
ditional antidote for many other problems.7

7. Requirements creep
It seems that no one was aware of the

overall impact of the changes made to the
Vasa during the two and a half years of con-
struction. This can (and does) easily happen

to software projects. Fundamental techniques
for maintaining control of software projects
are developing initial documentation and
consistently updating requirements and
plans to maintain an acceptable balance
among requirements, schedule, and resources
as the project evolves. Often-heard excuses
for failure to establish initial project docu-
mentation are lack of sufficient knowledge
to do so and the belief that “everything will
change anyway, so why plan?” You should
develop initial requirements and plans to
the extent possible in the face of imperfect
knowledge, with the expectation that they
will change and with procedures in place to
evolve them systematically. Failure to update
initial requirements and plans periodically, and
as events require, is often the result of a per-
ception that there is not enough time to do
so (“never enough time to do it right, but al-
ways time to redo it”). This perception, in
turn, comes from insufficient procedures for
managing requirements and plans on a con-
tinuing basis and a lack of appreciation for
the risks thus created.

8. Lack of scientific methods
Because software has no physical proper-

ties, you cannot calculate many traditional
engineering parameters for software (at
least, at this time). Unlike physical artifacts
such as the Vasa, however, you can build a
software system in small, incremental steps
and monitor the evolution of technical pa-
rameters such as memory usage, perform-
ance, safety, security, and reliability as the
system evolves.

9. Ignoring the obvious
In the case of the Vasa, the lurch test

demonstrated that the ship was dangerously
unstable. There was no room for additional
ballast. If there had been room, the added
weight would have placed the lower gun
portals below the waterline. Although we
lack scientific methods in many software en-
gineering areas, we can often avoid foresee-
able disasters by performing a few, often
quite simple, “back of the envelope” calcu-
lations. If, for example, a certain transac-
tion processing system must process 1,000
transactions per second and if each transac-
tion requires four complex queries, the sys-
tem must process 4,000 complex queries per
second, including the time required for con-

In modern
society, the role
of engineering
is to provide
systems and
products that
enhance the

material
aspects of

human life, thus
making life

easier, safer,
more secure,

and more
enjoyable.

2 4 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

text switching among transactions (that is,
250 microseconds per context switch and
transaction). Accounting for system laten-
cies might show the envisioned system to be
infeasible.

10. Unethical behavior
In modern society, the role of engineering

is to provide systems and products that en-
hance the material aspects of human life,
thus making life easier, safer, more secure,
and more enjoyable. Technological innova-
tion often involves ethical considerations. In
the Vasa’s case, the goal was to make Swe-
den more secure for its citizens and to bring
glory to the country. At the last moment,
when it became obvious the ship was not
seaworthy, those with authority to stop the
launch did not do so.

In our time, software engineers should
first serve the public; second, be advocates
for the customers and users of their prod-
ucts; and third, act in the interest of their
employers, in a manner that is consistent
with the public interest. Software engineers
should “accept full responsibility for their
work” and “approve software only if they
have a well-founded belief that it is safe,
meets specifications, passes appropriate
tests, and does not diminish quality of life,
diminish privacy, or harm the environment.
The ultimate effect of the work should be to
the public good.”9 Every software engineer
should be familiar with and adhere to a
code of ethics.

T able 1 presents only some of the
many possible antidotes for soft-
ware projects. Some antidotes listed

in one problem area apply equally to other
problem areas. For the sake of brevity, we
leave elaboration of Table 1 to readers.

According to the formal Vasa hearing’s
transcript, no one asked how or why the
ship had become unstable or why it was
launched with known stability problems.
The failure of this line of inquiry is perhaps
the most compelling problem from the Vasa
case study, as is our often-observed, present-
day failure to learn from our mistakes in
software engineering.

On a positive note, large, two-deck war-
ships were subsequently built and sailed
during the latter 17th and the 18th and 19th
centuries. In the same way, we can now,
with reasonable confidence of success, build
larger and more complex software-intensive
systems than in the past.

Acknowledgment
The reviewers and editor offered many valuable

recommendations for improvements to this article’s
initial draft. Photos by permission of the Vasa Museum.

References
1. A. Franzen, The Warship Vasa: Deep Diving and Ma-

rine Archaeology, 6th ed., Norstedt & Soners Forlag,
Stockholm, 1974.

2. The Royal Ship Vasa, http://home.swipnet.se/~w-70853/
WASAe.htm.

3. C. Borgenstam and A. Sandstrom, Why Vasa Capsized,
AB Grafisk Press, Stockholm, Sweden, 1995.

4. The Story of the Royal Swedish Man-of-War Vasa, multi-
media documentary, VyKett AB, Stockholm, Sweden,
1999; available (in English) on floppy disk by email in-
quiry to the Vasa Museum at vasamuseet@sshm.se.

5. A. Wahlgren, The Warship Vasa, a documentary film,
Vasa Museum, Stockholm, Sweden, 1996; available (in
English) on a VCR tape by email inquiry to the Vasa
Museum at vasamuseet@sshm.se.

6. F. Brooks, The Mythical Man-Month, Addison-Wesley,
Boston, 1995.

7. IEEE Std. 1058-1998, Standard for Software Project
Management Plans, IEEE, Piscataway, N.J., 1998.

8. Henry Petroski, To Engineer Is Human: The Role of
Failure in Successful Design, Vintage Books, New York,
71992.

9. Software Engineering Code of Ethics and Professional
Practice, IEEE Computer Society and ACM Joint Task
Force on Software Engineering Ethics and Professional
Practices, 1999, http://computer.org/tab/code11.htm.

For more information on this or any other computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

M a r c h / A p r i l 2 0 0 3 I E E E S O F T W A R E 2 5

About the Authors

Richard E. Fairley is a professor of computer science and associate dean of the OGI
School of Science & Engineering of the Oregon Health & Science University. He also participates
in the Oregon Master of Software Engineering program, which is offered collaboratively by
four Oregon universities. His research interests include requirements engineering, software ar-
chitecture, software process engineering, estimation, measurement and control of software
projects, risk management, and software engineering education. He is a member of the IEEE
Computer Society and ACM. Contact him at the OGI School of Science and Eng., 20000 NW
Walker Rd., Beaverton, OR 97006; dfairley@cse.ogi.edu.

Mary Jane Willshire is an associate professor of computer science in the Electrical
Engineering and Computer Science Department at the University of Portland, where she
teaches courses and conducts research in software engineering, human-computer interfaces,
and database technology. She is a member of the IEEE, ACM, Association for Women in Sci-
ence, and Society of Women Engineers. Contact her at the School of Engineering, Univ. of Port-
land, 5000 N. Willamette Blvd., Portland, OR 97203-5798; willshir@up.edu.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

